An energy-based model for electrowetting-induced droplet actuation

نویسندگان

  • Vaibhav A. Bahadur
  • Suresh Garimella
  • V Bahadur
  • S V Garimella
چکیده

Electrowetting (EW) induced droplet motion has been explored in the past decade in view of its promising applications in the field of microfluidics. This paper demonstrates the potential of energy-based analyses for modeling the performance of EW-based fluid actuation systems. Analyses based on system energy minimization offer simplified modeling tools to predict the overall performance of EW systems while circumventing the need to model the numerous complexities in the system. An analytical model is developed to estimate the actuation force on a droplet moving between two electrodes. The origins and contributions of various components of the actuation force are analyzed. The effects of dielectric parameters, electrode layout, droplet geometry and shape are discussed with the objective of maximizing the actuation force. The actuation force model is combined with semi-analytical models for predicting the forces opposing droplet motion to develop a model that predicts transient EW-induced droplet motion. Parametric results are obtained to evaluate the importance of operating voltage, fluid properties and droplet geometry on droplet motion. (Some figures in this article are in colour only in the electronic version)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy-Based Model for Electrowetting-Induced Droplet Actuation

Electrowetting (EW) induced droplet motion has been explored in the past decade in view of its promising applications in the field of microfluidics. This paper demonstrates the potential of energy-based analyses for modeling the performance of EW-based fluid actuation systems. Analyses based on system energy minimization offer simplified modeling tools to predict overall performance of EW syste...

متن کامل

Energy minimization-based analysis of electrowetting for microelectronics cooling applications

Electrowetting (EW)-induced droplet motion has been studied over the last decade in view of its promising applications in the field of microfluidics. The objective of the present work is to analyze the physics underlying two specific EW-based applications for microelectronics thermal management. The first of these involves heat absorption by liquid droplets moving on the surface of a chip under...

متن کامل

Electrical actuation of electrically conducting and insulating droplets using ac and dc voltages

Electrical actuation of liquid droplets at the microscale offers promising applications in the fields of microfluidics and lab-on-chip devices. Much prior research has targeted the electrical actuation of electrically conducting liquid droplets using dc voltages (classical electrowetting). Electrical actuation of conducting droplets using ac voltages and the actuation of insulating droplets (us...

متن کامل

Modeling and Control of Electrowetting Induced Droplet Motion

In this paper, a general methodology for the dynamic study of electrostatically actuated droplets is presented. A simplified 1D transient model is developed to investigate the transient response of a droplet to an actuation voltage and to study the effect of geometrical and fluid-thermal properties and electrical parameters on this behavior. First, the general approach for the dynamic droplet m...

متن کامل

Microfluidic actuation of insulating liquid droplets in a parallel-plate device

In droplet-based microfluidics, the simultaneous movement and manipulation of dielectric and aqueous droplets on a single platform is important. The actuation forces on both dielectric and aqueous droplets can be calculated with an electromechanical model using an equivalent RC circuit. This model predicts that dielectric droplet actuation can be made compatible with electrowetting-based water ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009